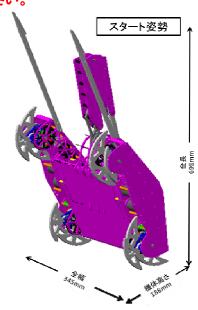
5月22日(金)必着

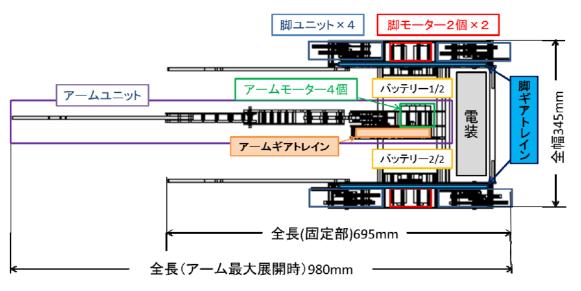
ロボットの基本設計書

ロボットの製作意図や魅力を企画としてわかりやすく、実行委員・協賛企業が短 時間で理解可能な形でまとめてください。

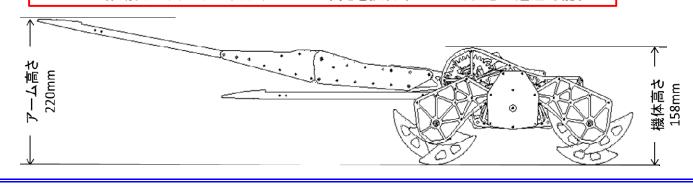
ロボッ	ト名(フリガナ)15文字以内	キャプテンが所属する会社or学校orチームの名称(フリガナ)
(フリカ゛ナ)	ニヒト	(フリガナ) ザクラソウ
rt*ット名	Nicht	さくら荘(RRSTOB)
	すでに提出しているエントリーシートと同じ事	

電源に「リチウム系電池」を用いる場合、大会規定品を使用してください。


貼り付け画像の背面が黒色ですと、印刷をした際に見えにくくなる可能性があります。

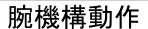

図面・画像を貼り付ける場合は、黒色の背面はなるべく避けてください。

※このページには必ず基本設計書を記入してください。 ※2ページ以上になる場合(添付シート利用可)は、右赤枠の注1をお読みください。

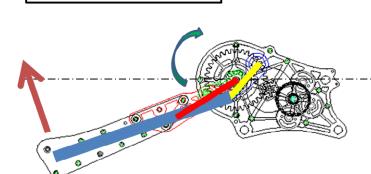

Nicht

機体スペック		
スタート姿勢サイズ	全長:695mm ×全幅: 345mm ×高さ:188mm	
スタート後サイズ	全長:980mm(最大) ×全幅: 345mm ×高さ:158mm	
腕機構	4節リンクロッド	
腕機構モーター	RS - 380PH(マブチ製) ×4	
足機構	: ヘッケンリンク(3層4脚)	
脚機構モーター	RS - 380PH(マブチ製) ×2	
バッテリー	タミヤ LFバッテリー LF2200-6.6V×2	
スタート方法	転倒スタート	
重量	3500g以下	

アーム作動面は、リング上面より20cmの高さを試合中いつでも任意に通過可能。



5月22日(金)必着


ロボットの基本設計書

A4一枚に収まらない場合、こちらのシートをお使いください。

原動節(動力に接続) 揺動節(攻撃に使用) 従動節

腕機構

- -4節リンクを用いた揺動運動を行い、相手をひっくり返します。 腕機構の先端は角を落としているので安全にも配慮しています
- •アームはスタート姿勢(695mm×495mm×188mm)に収まり 最大サイズ (980mm×495mm×188mm) 以内で換装する。

脚機構動作

原動節(動力に接続)

揺動節(フィールドに接地)

クランク角.0度

90度

180度(接地)

270度

脚機構

・3枚で1セットのヘッケンクランク脚が112度の往復角運動を行い歩行する。 この脚ユニットが4セット付いている。