5月25日(金)必着

ロボットの基本設計書

ロボットの製作意図や魅力を企画としてわかりやすく、実行委員・協賛企業が短時間で理解可能な形でまとめてください。

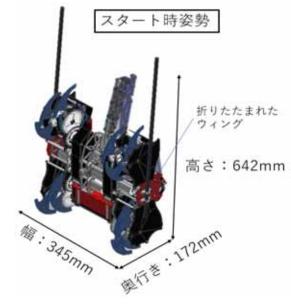
☑ 競技規則を確認した

☑ 添付あり

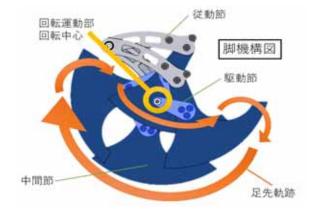
Ver1.0

ロボッ	卜名(フリガナ)15文字以内	キャプテンが所属する会社or学校orチームの名称(フリガナ)
(フリカ ナ)	イヴェルタル	(フリガナ) シバウラコウギョウダイガクエスアールディーシー
ロポット名	イヴェルタル	芝浦工業大学SRDC
	すでに提出しているエントリーシートと同じ事	

電源に「リチウム系電池」を用いる場合、大会規定品を使用してください


全体構成

機体寸法は全長880mm、横幅511mm、高さ172mm、重量は3280gです。バッテリは、大会規定のイーグルLife6.6V2200mAhを2本、制御回路は双葉電子工業製MC402を3個使用します。また、プロポには双葉電子工業製6kを使用し、同社製R2006GSを受信機として搭載します。駆動源にはマブチモーター製380モータをアーム部に4個、脚部に2個、合計して6個を無改造の状態で搭載します。


競技開始姿勢

転倒した姿勢をとることにより競技開始時の 寸法は幅345mm、奥行き172mm、高さ642mm となり、大会規定内に収まります。この状態から バック入力をすることにより競技姿勢に移行する事が できます。なお、機体横側に取り付けてあるウィングは 転倒姿勢時に折りたたみます。

脚機構

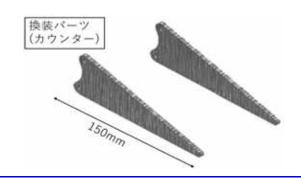
90度位相の4層ヘッケンリンク機構から構成される脚ユニットを左右に2組ずつ、計4組配置します。動力には左右1個ずつ計2個のマブチモーター製380モーターを使用し、ギアで各脚機構に動力を伝達します。なお、接地点はクランクの回転中心を取り囲まない動作軌道を描きます。また、サスペンションおよびダンパーの搭載により走破性、安定性を向上させます。

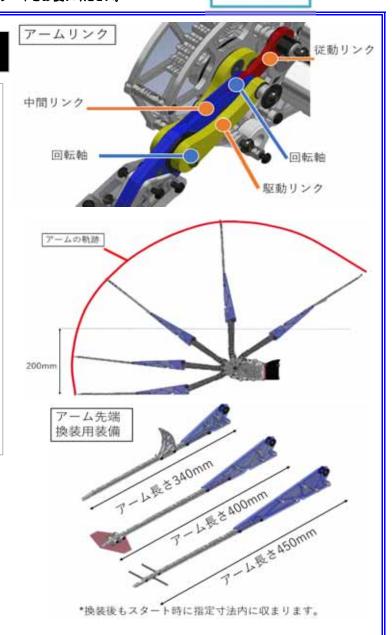
5月25日(金)必着

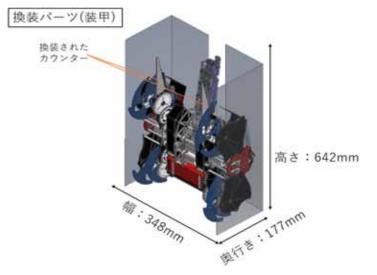
ロボットの基本設計書

A4一枚に収まらない場合、こちらのシートをお使いください。

添付


Ver1.0


アーム機構


腕には4節リンク機構を用いたロッドアームを 採用します。駆動軸から駆動リンク(黄)に動力を 伝え、駆動リンク(黄)に回転軸で接続されている 無動力の中間リンク(青)が従動リンク(赤)に 従って揺動運動を行います。アーム作動面は 中間リンク(青)に繋がっており、その軌道は 2点以上の円弧中心を持つ連続した曲線を通過 します。また、アーム作動面は地面より200mmの 高さを任意に通過可能です。動力には マブチモーター製380モータを4個使用しギアで アーム機構に動力を伝達します。 アーム先端部等の鋭利な部分には フィレット加工を施し、安全面に配慮します。 アーム先端部は数種類のものを用意し、 対戦相手に応じて換装を行います。アーム先端 を換装した場合においても大会規定の寸法、重 量に収まっています。なお、換装時、アームの機 構部分の変更は行いません。

換装パーツ(装甲および カウンター)

相手によって装甲およびカウンターを換装します。 装甲やカウンターを換装する際、一部の部品を取り外すため、換装を行った場合においても 大会規定の寸法、重量に収まっています。 鋭利な部分にはフィレット加工を施し、安全面に 配慮しています。なお、換装時に機構部分の 変更は行いません。

